資源簡介 (共25張PPT)蘇州大學(xué)數(shù)學(xué)科學(xué)學(xué)院 徐稼紅[email protected]? 背景、框架及資源(理論)? 數(shù)學(xué)建模與數(shù)學(xué)探究的教與學(xué)(實(shí)踐)? 國內(nèi)外中學(xué)生數(shù)學(xué)建模競賽活動(dòng)簡介(拓展)? 課標(biāo)2003→課標(biāo)2017 專題:數(shù)學(xué)建模、數(shù)學(xué)探究 → 主題:數(shù)學(xué)建模活動(dòng)與數(shù)學(xué)探究活動(dòng)(必修6課時(shí),選擇性必修4課時(shí))? 課標(biāo)2017 數(shù)學(xué)建模能力成為六大核心素養(yǎng)之一 (三會、四基、四(五)能、六核)? 數(shù)學(xué)模型與數(shù)學(xué)建模 數(shù)學(xué)模型(mathematical model)是用數(shù)學(xué)語言模擬現(xiàn)實(shí)世界的一種模型,是解決實(shí)際問題時(shí)所用的一種數(shù)學(xué)結(jié)構(gòu) 數(shù)學(xué)建模(mathematical modeling)是對現(xiàn)實(shí)問題進(jìn)行數(shù)學(xué)抽象,用數(shù)學(xué)語言表達(dá)問題、用數(shù)學(xué)知識與方法構(gòu)建數(shù)學(xué)模型解決問題的過程 表現(xiàn)——發(fā)現(xiàn)和提出問題,建立和求解模型,檢驗(yàn)和完善模型,分析和解決問題? 數(shù)學(xué)探究與數(shù)學(xué)建模 數(shù)學(xué)探究(mathematical inquiring)是圍繞某個(gè)具體的數(shù)學(xué)問題,開展自主探究、合作研究并最終解決數(shù)學(xué)問題的過程 表現(xiàn)——發(fā)現(xiàn)和提出有意義的數(shù)學(xué)問題,猜測合理的數(shù)學(xué)結(jié)論,提出解決問題的思路和方案,通過自主探索或合作研究論證數(shù)學(xué)結(jié)論 數(shù)學(xué)建模與數(shù)學(xué)探究 價(jià)值指向——四能 運(yùn)作范圍——數(shù)學(xué)建模連接兩個(gè)世界:數(shù)學(xué)內(nèi)部世界和外部世界(運(yùn)用數(shù)學(xué)的知識和方法解決實(shí)際問題) 數(shù)學(xué)探究通常在數(shù)學(xué)內(nèi)部世界進(jìn)行探索? 數(shù)學(xué)建模核心素養(yǎng)的水平(學(xué)業(yè)質(zhì)量水平) 三個(gè)水平:簡單問題、較復(fù)雜問題、復(fù)雜問題 四個(gè)方面:情境與問題、知識與技能、思維與表達(dá)、交流與反思 ◆? 數(shù)學(xué)建模與數(shù)學(xué)探究的過程性評價(jià)數(shù)學(xué)建模與數(shù)學(xué)探究活動(dòng)以課題研究的形式開展,主要包括選題、開題、做題、結(jié)題四個(gè)環(huán)節(jié) ◆研究報(bào)告或小論文(獨(dú)立完成或2~3人小組合作)及其評價(jià)存入學(xué)生個(gè)人學(xué)習(xí)檔案,為大學(xué)招生提供參考依據(jù)? 資源 張思明.張思明與中學(xué)數(shù)學(xué)建模[M].北京:北京師范大學(xué)出版社,2015. 張思明.張思明與數(shù)學(xué)課題學(xué)習(xí)[M].北京:北京師范大學(xué)出版社,2006. 美國數(shù)學(xué)及其應(yīng)用聯(lián)合會(COMAP),美國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(SIAM)著,梁貫成,賴明治,喬中華、陳艷萍編譯.?dāng)?shù)學(xué)建模教學(xué)與評估指南[M].上海:上海大學(xué)出版社,2017.《張思明與中學(xué)數(shù)學(xué)建模》(16開,354頁) ? 我的成長之路 ? 我的教育觀 ? 走進(jìn)課堂 ? 我做中學(xué)數(shù)學(xué)建模 ? 社會反響 ? 附錄《數(shù)學(xué)建模教學(xué)與評估指南》(16開,269頁)/ ? 前言 ? 第一章 什么是數(shù)學(xué)建模 ? 第二章 低中年級數(shù)學(xué)建模:學(xué)前班至8年級 ? 第三章 高中數(shù)學(xué)建模:9至12年級 ? 第四章 大學(xué)本科數(shù)學(xué)建模 ? 第五章 什么是數(shù)學(xué)建模:藝術(shù)與品味 ? 附錄 附錄A~附錄D與原書對應(yīng) 附錄E: 中國高中數(shù)學(xué)建模案例,附錄F: 國際數(shù)學(xué)建模挑戰(zhàn)賽主要包括—在實(shí)際情境中從數(shù)學(xué)的視角發(fā)現(xiàn)問題、提出問題,分析問題、構(gòu)建模型,確定參數(shù)、計(jì)算求解,檢驗(yàn)結(jié)果、改進(jìn)模型,最終解決實(shí)際問題? 數(shù)學(xué)建模活動(dòng)的基本過程指導(dǎo)原則—建模是開放且復(fù)雜的;當(dāng)學(xué)生建模時(shí),他們必須做出真正的選擇;建模問題可以來自于熟悉的任務(wù);評價(jià)的重點(diǎn)在于過程,而不是結(jié)果或個(gè)別要素;以團(tuán)隊(duì)形式完成建模? 數(shù)學(xué)建模過程① 為了幫助學(xué)生理解、建立概念,掌握函數(shù)、定理、公式等而有意設(shè)計(jì)的實(shí)際情境;② 直接套用數(shù)學(xué)概念、函數(shù)、定理、公式等,給出有實(shí)際意義的結(jié)果(如函數(shù)值),或者解釋、說明、得到結(jié)果的實(shí)際意義;③ 通過簡單的變換,間接套用數(shù)學(xué)概念、函數(shù)、定理、公式等,給出有實(shí)際意義的結(jié)果;④ 教師或教材給出實(shí)際問題,并帶領(lǐng)(教材是引領(lǐng))學(xué)生完成數(shù)學(xué)化的、簡單具體的數(shù)學(xué)應(yīng)用;在日常教學(xué)中要有意識地達(dá)到①②③④的要求? 數(shù)學(xué)建模教學(xué)的推進(jìn)層次⑤ 教師或教材給出實(shí)際問題,學(xué)生自主完成數(shù)學(xué)化的、簡單具體的數(shù)學(xué)應(yīng)用; 在章節(jié)復(fù)習(xí)中出現(xiàn)⑤的要求⑥ 教師或教材給出問題情境,學(xué)生自主提出實(shí)際問題,師生一起完成“建立模型”和“模型求解”的主要過程的數(shù)學(xué)活動(dòng);⑦ 全過程(選題、開題、做題、結(jié)題)、學(xué)生部分自主(發(fā)現(xiàn)提出問題,模型的選擇和建立,求解模型,給出模型結(jié)果的解釋,在這些環(huán)節(jié)中,教師部分參與,給予指導(dǎo)和支持)的數(shù)學(xué)建模活動(dòng);⑧ 全過程、全自主(學(xué)生自主發(fā)現(xiàn)提出問題,自主完成數(shù)學(xué)化的建模過程,自主求解模型,自主給出模型結(jié)果的解釋,在整個(gè)過程中可以自主決定是否尋求教師的幫助)的數(shù)學(xué)建模活動(dòng) ⑥⑦⑧是數(shù)學(xué)建模的專項(xiàng)要求史寧中,王尚志.普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版)解讀[M].北京:高等教育出版社,2018:192-193. (1)從應(yīng)用問題到建模問題 /? 若干問題一個(gè)建模問題必須給學(xué)生提供足夠的空間,讓他們來解釋這個(gè)問題,并在解決問題的過程中有自己的選擇(案例2:加油問題 /)對熟悉的應(yīng)用題進(jìn)行改造,將數(shù)學(xué)建模的元素納入現(xiàn)有的課程中(案例1:直線的斜截式方程 /)/(2)技術(shù)在數(shù)學(xué)建模與數(shù)學(xué)探究活動(dòng)中的作用“在數(shù)學(xué)建模活動(dòng)與數(shù)學(xué)探究活動(dòng)中,鼓勵(lì)學(xué)生使用信息技術(shù)”(《課標(biāo)2017》P.36)? 數(shù)據(jù)擬合、優(yōu)化問題、模擬(數(shù)學(xué)建模)案例1 剎車距離問題(《課標(biāo)2017》P.116)/ ? 動(dòng)態(tài)圖像、符號推理(數(shù)學(xué)探究)案例2 函數(shù)不動(dòng)點(diǎn)與迭代法求方程的近似解 /案例3 探究拋物線焦點(diǎn)弦的端點(diǎn)處切線的交點(diǎn)軌跡 /(3)一些可供選擇的數(shù)學(xué)建模與數(shù)學(xué)探究案例 / ? 北京、上海分別從1997年、1991年起組織中學(xué)生數(shù)學(xué)知識應(yīng)用競賽 競賽分初賽(開卷)、決賽(閉卷)兩次進(jìn)行。(上海1995年起增加小論文競賽, 2001年起組織數(shù)模夏令營) 上海—— 題型、內(nèi)容定型化、程式化,命題內(nèi)容大同小異: 二元線性規(guī)劃,圖論問題,物資調(diào)運(yùn),投資決策,圖形測量,幾何體的轉(zhuǎn)、折、三視圖,數(shù)據(jù)擬合,風(fēng)險(xiǎn)決策,統(tǒng)計(jì)試驗(yàn)北京—— 實(shí)用性、靈活性、廣泛性,強(qiáng)調(diào)交流合作、動(dòng)手實(shí)踐: 擬合、估計(jì),經(jīng)濟(jì)活動(dòng),熱點(diǎn)問題,征題,小論文 宗旨: ? 推動(dòng)教育變革 ? 促進(jìn)數(shù)學(xué)建模教與學(xué)向全體學(xué)校和全體學(xué)生的普及 ? 師生需要體驗(yàn)數(shù)學(xué)的力量 ? 在真實(shí)的情境中應(yīng)用數(shù)學(xué)去理解和分析現(xiàn)實(shí)世界并 解決現(xiàn)實(shí)世界中的問題http://www.immchallenge.org 組織單位: COMAP(The Consortium for Mathematics and Its Applications, 數(shù)學(xué)及其應(yīng)用聯(lián)合會) The NeoUnion ESC Organization(儒蓮教科文機(jī)構(gòu)) ? 2015年第1屆(Movie Scheduling) ? 2016年第2屆(Record Insurance) ? 2017年第3屆(Jet Lag) ? 2018年第4屆(The Best Hospital, 2018.3.12~5.7, 5天, 4+1人)組織單位:中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會 首屆:(1)預(yù)賽:采用通訊賽形式,2016年7月22上午8點(diǎn)到25日下午4點(diǎn),連續(xù)80個(gè)小時(shí)來自全國的600多支隊(duì)伍報(bào)名,最后400多支隊(duì)伍成功提交了參賽論文。評審并確定一、二、三等獎(jiǎng)名單,并從一等獎(jiǎng)中選出了24支入圍決賽 (2)決賽:采用夏令營的形式,2016年8月22-26日在北京市舉行。來自全國的23支隊(duì)伍參加,評審并確定了決賽特等獎(jiǎng) 朝外1隊(duì)—朝陽外國語學(xué)校、邯鄲6隊(duì)—邯鄲市第一中學(xué))、一等獎(jiǎng)(3名)、二等獎(jiǎng)(7名)及三等獎(jiǎng) / / http://www.dengfengbei.com/ 第2屆:(1)初賽:采用通訊賽形式,2016年12月16-19。來自全國的600多支隊(duì)伍報(bào)名,最后400多支隊(duì)伍成功提交了參賽論文。評審并確定一、二、三等獎(jiǎng)名單,并從一等獎(jiǎng)中選出了24支入圍決賽。(2)復(fù)賽:2017年4-5月,復(fù)賽一等獎(jiǎng)獲得者中部分優(yōu)秀的隊(duì)伍獲得進(jìn)入全國總決賽的資格。 (3)決賽:采用夏令營的形式,2017年8月19-2日在北京舉行。來自全國的28支隊(duì)伍參加,評審并確定了決賽一等獎(jiǎng)(6個(gè)隊(duì))、二等獎(jiǎng)(11個(gè)隊(duì))及三等獎(jiǎng)(11個(gè)隊(duì))。問題 / 獲獎(jiǎng)名單 / 第3屆:復(fù)賽問題 / 組織單位:COMAP(The Consortium for Mathematics and Its Applications, 美國數(shù)學(xué)及其應(yīng)用聯(lián)合會) 背景:在美國大學(xué)生數(shù)學(xué)建模競賽取得成功的背景下,借鑒了大學(xué)生數(shù)學(xué)建模競賽的模式,結(jié)合中學(xué)生的特點(diǎn)進(jìn)行設(shè)計(jì)? 1999年第1屆? 2018年第21屆(2018.11.9~19, 11天, 4人)2017年第20屆中國深圳國際交流學(xué)院、深圳萬科梅沙書院、上海包玉剛實(shí)驗(yàn)學(xué)校獲特等獎(jiǎng)High School Mathematical Contest in Modeling (HiMCM)組織單位:弗賴登塔爾學(xué)院(Freudenthal institute of Utrecht University in the Netherlands) 背景:為選學(xué)A類數(shù)學(xué)的學(xué)生(將數(shù)學(xué)作為今后學(xué)習(xí)和工作的工具,grade 11 and 12 (age 16-18) of secondary schools)設(shè)計(jì)? 1990年第1屆(The battle against the shop thieves)? 2015年第26屆(初賽9:00-16:00, 7小時(shí),決賽周五11:00-周六13:00, 26小時(shí),有答辯,3~4人組隊(duì)參賽)周邊德國、丹麥等國的學(xué)生也參加了此項(xiàng)賽事The Mathematics A-lympiad(1)問題的提出 發(fā)現(xiàn)問題、調(diào)查、獲取數(shù)據(jù);(2)建立模型 合理簡化、模型假設(shè);(3)模型求解 推理、計(jì)算,數(shù)學(xué)工具的運(yùn)用;(4)檢驗(yàn)與應(yīng)用 回到實(shí)際問題檢驗(yàn)、修正和完善,有何應(yīng)用小論文示例:? 從拼圖游戲到人類基因組計(jì)劃 / ? 關(guān)于節(jié)約家用天然氣問題的數(shù)學(xué)分析 / ? 計(jì)劃性升血——挽救更多生命 / ? 變速車的變速、“騙”速與改進(jìn) / ? 在月球上跳高和跳遠(yuǎn) / (更多 /)一線教師在提升學(xué)生和自己的數(shù)學(xué)素養(yǎng)方面,大有作為、大有可為、時(shí)不我待、機(jī)會多多. ——張思明 展開更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來源于二一教育資源庫