資源簡介 中小學教育資源及組卷應用平臺初中數學必考公式及性質一、初中數學必考公式:1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內錯角相等,兩直線平行11同旁內角互補,兩直線平行12兩直線平行,同位角相等13兩直線平行,內錯角相等14兩直線平行,同旁內角互補15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊17三角形內角和定理三角形三個內角的和等于180°18推論1直角三角形的兩個銳角互余19推論2三角形的一個外角等于和它不相鄰的兩個內角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內角21全等三角形的對應邊、對應角相等22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半39定理線段垂直平分線上的點和這條線段兩個端點的距離相等40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即47勾股定理的逆定理如果三角形的三邊長a、b、c有關系,那么這個三角形是直角三角形48定理四邊形的內角和等于360°49四邊形的外角和等于360°50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等55平行四邊形性質定理3平行四邊形的對角線互相平分56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等65菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質定理1正方形的四個角都是直角,四條邊都相等70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1關于中心對稱的兩個圖形是全等的72定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例那么這條直線平行于三角形的第三邊89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97性質定理2相似三角形周長的比等于相似比98性質定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點的距離等于定長的點的集合102圓的內部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質定理圓的切線垂直于經過切點的半徑124推論1經過圓心且垂直于切線的直線必經過切點125推論2經過切點且垂直于切線的直線必經過圓心126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139正n邊形的每個內角都等于(n-2)×180°/n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長計算公式:L=n兀R/180145扇形面積公式:S扇形=n兀R^2/360=LR/29146內公切線長=d-(R-r)外公切線長=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2數學公式性質分析乘法與因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③?(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。冪的運算性質①?am×an=am+n;②am÷an=am-n;③(am)n=amn;④(ab)n=anbn;⑤(?)n=?;⑥a-n=,特別:(??)-n=(??)n;?⑦?a0=1(a≠0)。二次根式①?(??)2=a?(a≥0);②??=丨a丨;③??=??×??;④??=??(a>0,b≥0)?。三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加強條件:||a|-|b||≤|a±b|≤|a|+|b|也成立,這個不等式也可稱為向量的三角不等式(其中a,b分別為向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b;|a-b|≥|a|-|b|;-|a|≤a≤|a|;某些數列前n項之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3;一元二次方程對于方程:ax2+bx+c=0:①求根公式是x=??,其中?△=b2-4ac叫做根?的判別式。當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當?△<0時,方程沒有實數根.注意:當△≥0時,方程有實數根。②若方程有兩個實數根x1和x2,則二次三項式ax2+bx+c可分解為a(x-x1)(x-x2)。③以a和b為根的一?元二次方程是?x2-(a+b)x+ab=0。一次函數一次函數y=kx+b(k≠0)的圖象是一條直線(b是直線與y軸的交點的縱坐標,稱為截距)。①當k>0時,y?隨x的增大而增大(直線從左向右上升);②當k<0時,y隨x的增大而減小(直線從左向右下降);③特別地:當b=0時,y=kx?(k≠0)又叫做正比例函數(y與x成正比例),圖象必過原點。反比例函數反比例函數y=??(k≠0)的圖象叫做雙曲線。①當k>0時,雙曲線在一、三象限(在每一象限內,從左向右降);②當k<0時,雙曲線在二、四象限(在每一象限內,從左向右上升)。二次函數(1).定義:一般地,如果是常數,,那么叫做的二次函數。(2).拋物線的三要素:開口方向、對稱軸、頂點。①的符號決定拋物線的開口方向:當時,開口向上;當時,開口向下;相等,拋物線的開口大小、形狀相同。②平行于軸(或重合)的直線記作.特別地,軸記作直線。(3).幾種特殊的二次函數的圖像特征如下:函數解析式開口方向對稱軸頂點坐標當時開口向上當時開口向下(軸)(0,0)(軸)(0,)(,0)(,)()(4).求拋物線的頂點、對稱軸的方法①公式法:,∴頂點是,對稱軸是直線。②配方法:運用配方的方法,將拋物線的解析式化為的形式,得到頂點為(,),對稱軸是直線。③運用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,對稱軸與拋物線的交點是頂點。若已知拋物線上兩點(及y值相同),則對稱軸方程可以表示為:(5).拋物線中,的作用①決定開口方向及開口大小,這與中的完全一樣。②和共同決定拋物線對稱軸的位置.由于拋物線的對稱軸是直線。,故:①時,對稱軸為軸;②(即、同號)時,對稱軸在軸左側;③(即、異號)時,對稱軸在軸右側。③的大小決定拋物線與軸交點的位置。當時,,∴拋物線與軸有且只有一個交點(0,):①,拋物線經過原點;②,與軸交于正半軸;③,與軸交于負半軸.以上三點中,當結論和條件互換時,仍成立.如拋物線的對稱軸在軸右側,則。(6).用待定系數法求二次函數的解析式①一般式:.已知圖像上三點或三對、的值,通常選擇一般式.②頂點式:.已知圖像的頂點或對稱軸,通常選擇頂點式。③交點式:已知圖像與軸的交點坐標、,通常選用交點式:。(7).直線與拋物線的交點①軸與拋物線得交點為(0,)。②拋物線與軸的交點。二次函數的圖像與軸的兩個交點的橫坐標、,是對應一元二次方程的兩個實數根.拋物線與軸的交點情況可以由對應的一元二次方程的根的判別式判定:a有兩個交點()拋物線與軸相交;b有一個交點(頂點在軸上)()拋物線與軸相切;c沒有交點()拋物線與軸相離。③平行于軸的直線與拋物線的交點同②一樣可能有0個交點、1個交點、2個交點.當有2個交點時,兩交點的縱坐標相等,設縱坐標為,則橫坐標是的兩個實數根。④一次函數的圖像與二次函數的圖像的交點,由方程組的解的數目來確定:a方程組有兩組不同的解時與有兩個交點;b方程組只有一組解時與只有一個交點;c方程組無解時與沒有交點。⑤拋物線與軸兩交點之間的距離:若拋物線與軸兩交點為,則統計初步(1)概念:①所要考察的對象的全體叫做總體,其中每一個考察對象叫做個體.從總體中抽取的一部份個體叫做總體的一個樣本,樣本中個體的數目叫做樣本容量.②在一組數據中,出現次數最多的數(有時不止一個),叫做這組數據的眾數.③將一組數據按大小順序排列,把處在最中間的一個數(或兩個數的平均數)叫做這組數據的中位數.(2)公式:設有n個數?x1,x2,…,xn?,那么:①平均數為:;②極差:用一組數據的最大值減去最小值所得的差來反映這組數據的變化范圍,用這種方法得到的差稱為極差,即:極差=最大值-最小值;③方差:數據、……,的方差為,④標準差:方差的算術平方根。數據、……,的標準差,一組數據的方差越大,這組數據的波動越大,越不穩定。頻率與概率(1)頻率頻率=,各小組的頻數之和等于總數,各小組的頻率之和等于1,頻率分布直方圖中各個小長方形的面積為各組頻率。(2)概率①如果用P表示一個事件A發生的概率,則0≤P(A)≤1;P(必然事件)=1;P(不可能事件)=0;②在具體情境中了解概率的意義,運用列舉法(包括列表、畫樹狀圖)計算簡單事件發生的概率。③大量的重復實驗時頻率可視為事件發生概率的估計值;銳角三角形①設∠A是△ABC的任一銳角,則∠A的正弦:sinA=?,∠A的余弦:cosA=?,∠A的正切:tanA=?.并且sin2A+cos2A=1。0<sinA<1,?0<cosA<1,?tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小。②余角公式:sin(90?-A)=cosA,?cos(90?-A)=sinA。③特殊角的三角函數值:sin30?=cos60?=??,sin45?=cos45?=??,sin60?=cos30?=??,tan30?=,tan45?=1,tan60??=。④斜坡的坡度:?i=??=??.設坡角為α,則i=tanα=??。正(余)弦定理(1)正弦定理a/sinA=b/sinB=c/sinC=2R;注:其中R表示三角形的外接圓半徑。正弦定理的變形公式:(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA:sinB:sinC=a:b:c(2)余弦定理b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC;注:∠C所對的邊為c,∠B所對的邊為b,∠A所對的邊為a三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化積sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB積化和差2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)平面直角坐標系中的有關知識(1)對稱性:若直角坐標系內一點P(a,b),則P關于x軸對稱的點為P1(a,-b),P關于y軸對稱的點為P2(-a,b),關于原點對稱的點為P3(-a,-b)。(2)坐標平移:若直角坐標系內一點P(a,b)向左平移h個單位,坐標變為P(a-h,b),向右平移h個單位,坐標變為P(a+h,b);向上平移h個單位,坐標變為P(a,b+h),向下平移h個單位,坐標變為P(a,b-h).如:點A(2,-1)向上平移2個單位,再向右平移5個單位,則坐標變為A(7,1)。多邊形內角和公式多邊形內角和公式:n邊形的內角和等于(n-2)180?(n≥3,n是正整數),外角和等于360?平行線段成比例定理(1)平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例。如圖:a∥b∥c,直線l1與l2分別與直線a、b、c相交與點A、B、C和D、E、F,則有。(2)推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。如圖:△ABC中,DE∥BC,DE與AB、AC相交與點D、E,則有:直角三角形中的射影定理直角三角形中的射影定理:如圖:Rt△ABC中,∠ACB=90o,CD⊥AB于D,則有:(1)(2)(3)圓的有關性質(1)垂徑定理:如果一條直線具備以下五個性質中的?任意兩個性質:①經過圓心;②垂直弦;③平分弦;④平分弦所對的劣弧;?⑤平分弦所對的優弧,那么這條直線就具有另外三個性質.注:具備①,③時,弦不能是直徑。(2)兩條平行弦所夾的弧相等。(3)圓心角的度?數等于它所對的弧的度數。(4)一條弧所對的圓周角等于它所對的圓心角的一半。(5)圓周?角等于它所對的弧的度數的一半。(6)同弧或等?弧所對的圓周角相等。(7)在同圓或等圓中,相等的圓周角所對的弧相等。(8)90?的圓周角?所對的弦是直徑,反之,直徑所對的圓周角是90?,直徑是最長的弦。、(9)圓內接四邊形的對角互補。三角形的內心與外心(1)三角形的內切圓的圓心叫做三角形的內心.三角形的內心就是三內角角平分線的交點。(2)三?角形的外接圓的圓心叫做三角形的外心.三角形的外心就是三邊中垂線的交點.常見結論:①Rt△ABC的三條邊分別為:a、b、c(c為斜邊),則它的內切圓的半徑?;②△ABC的周長為,面積為S,其內切圓的半徑為r,則弦切角定理及其推論(1)弦切角:頂點在圓上,并且一邊和圓相交,另一邊和圓相切的角叫做弦切角。如圖:∠PAC為弦切角。(2)弦切角定理:弦切角度數等于它所夾的弧的度數的一半。如果AC是⊙O的弦,PA是⊙O的切線,A為切點,則推論:弦切角等于所夾弧所對的圓周角(作用證明角相等)如果AC是⊙O的弦,PA是⊙O的切線,A為切點,則相交弦定理、割線定理和切割線定理(1)相交弦定理:圓內的兩條弦相交,被交點分成的兩條線段長的積相等。如圖①,即:PA·PB=PC·PD(2)割線定理:從圓外一點引圓的兩條割線,這點到每條割線與圓交點的兩條線段長的積相等。如圖②,即:PA·PB=PC·PD(3)切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。如圖③,即:PC2=PA·PB①②③面積公式①S正△=??×(邊長)2.?②S平行四邊形=底×高.③S菱形=底×高=??×(對角線的積),④?⑤S圓=πR2.⑥l圓周長=2πR.⑦弧長L=??.?⑧⑨S圓柱側=底面周長×高=2πrh,S全面積=S側+S底=2πrh+2πr2⑩S圓錐側=??×底面周長×母線=πrb,S全面積=S側+S底=πrb+πr2hlαOPBCAHYPERLINK"http://21世紀教育網(www.21cnjy.com)"21世紀教育網(www.21cnjy.com) 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫