中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

初二數學(人教版)-一次函數復習(二課時)(教案+任務單)

資源下載
  1. 二一教育資源

初二數學(人教版)-一次函數復習(二課時)(教案+任務單)

資源簡介



教學基本信息
課題
一次函數的復習
學科
數學
學段:
初中
年級
初二
教材
書名:
《人教版數學八年級下冊教科書》
出版社:人民教育出版社
出版日期:2019年11

教學目標及教學重點、難點
根據條件求出一次函數的解析式;會解決與一次函數有關的面積、最值問題;會用函數觀點看方程、不等式。
重點:運用數形結合的思想分析一次函數相關的問題。
難點:以圖象為工具研究函數有關的問題。
教學過程(表格描述)
教學環節
主要教學活動
設置意圖
引入
本節課為一次函數復習課的第二課時,通過本節課的復習,能根據條件求出一次函數的解析式,熟練解決相關面積、最值問題的問題,并且會用函數觀點看方程及不等式。
通過典型例題,將基礎知識點進一步梳理,并且運用數形結合的思想去解決問題,加強對知識的靈活掌握,提升運用知識的解題能力。
讓學生對本節課學習有個整體的了解、明確本節課的學習目標
例題
例1.直線過點,且與直線相交于點.
求直線的表達式;
若直線與軸交于點,點在軸上,且,求出點的坐標。
例2.已知直線.
求它關于軸對稱的直線所對應的函數表達式;
將直線向左平移3個單位,求平移后所得直線所對應的函數表達式;
將直線繞原點順時針旋轉,求旋轉后所得直線所對應的函數表達式。
例3.已知點和點,分別求出滿足下列條件的點的坐標:
(1)在直線y=4上找一點C,使得AC+BC的值最小;
(2)在x軸上找一點D,使得的周長最小;
(3)在y軸上找一點E,使得|AE-BE|的值最大.
兩直線的交點體現了函數與方程的關系,從數的角度看,交點的坐標值是兩個一次函數組成的二元一次方程組的解;從形的角度講,是指兩條直線均經過該點.熟悉點的坐標和距離之間的關系。
運用數形結合的思想.
熟練運用待定系數法求一次函數的解析式;點的坐標就是函數解析式與函數圖像轉化的工具。充分利用數形結合的思想;求已知直線平移、翻折或者旋轉后所得直線的的解析式,本質上是考察變換前后坐標之間的關系。
這是幾何問題在函數中的體現,借助一次函數求最值問題,關鍵是求出有關直線的解析式及相應點的坐標。
總結
解析式是一次函數的很重要的一種表示形式,它從數的角度反映了變量之間的變化規律,而函數圖象的本質是,用坐標系中直線上點的坐標反映了變量之間的對應關系,函數的解析式和函數圖像可以相互轉化,這種轉化的工具就是點的坐標。因此,解決函數相關的問題,我們要理解題目的本質,熟練運用數形結合的思想。
提升思想高度,抓住事物本質
作業
1.若直線y=2x-4與直線y=4x+b的交點在第三象限,則b的取值范圍是
.
2.如圖,直線經過點,則關于的一元一次不等式的解集是_______.
3.直線與軸分別交于點,直線與軸分別交于點,這兩條直線交于點.
求點的坐標;
若為直線上一點,當的面積為時,求點的坐標.
鞏固本節課所學的方法和數學思想《一次函數復習(第一課時)》學習任務單
【學習目標】
本節課通過三道例題,體會函數是刻畫現實世界中變化規律的重要數學模型,復習函數的定義、三種表示方法,通過例題,復習一次函數的定義和性質,用待定系數法求一次函數的解析式,通過函數觀點看解方程(組)和不等式,嘗試用研究一次函數的方法探究新函數;從數形結合的角度,用運動變化的觀點進行分析,將前面所學的知識融會貫通,根據具體情況靈活地思考,解決問題。
【課上任務】
1.復習函數的定義;
2.通過一個實際應用問題,體會函數是刻畫現實世界中變化規律的重要數學模型,并復習函數的三種表示方法,關注從實際問題抽象為數學問題的過程,關注函數表示方法之間的關系。
例1:下表記錄了一輛汽車在實驗場地上做耗油實驗的數據。在行駛的過程中,油箱中剩余油量G和行駛時間t是否具有函數關系呢?
汽車行駛時間t/小時
0
1
2
3

油箱中剩余油量G/升
100
94
88
82

3.通過例題,梳理一次函數相關知識。
例2:已知一次函數y=kx+b
(k≠0)的圖象,經過點M(1,2)和點N(3,-2),求一次函數的解析式.
4.運用研究函數的一般方法,畫出一個新函數的圖象.
通過所學的絕對值知識再次認識新函數中的變量.并結合圖象,數形結合考慮問題,解決有關不等式和方程的相關問題.
例3:畫出函數的圖象.根據函數圖象回答下列問題:
(1)求不等式的解集;
(2)若關于x的方程有解,求b的取值范圍.
【課后作業】
作業一:根據下表中一次函數的自變量x與函數y的對應值,可得p的值為(

x
-2
0
1
y
3
p
0
A.-1
B.1
C.3
D.-3
作業二:直線經過兩點A(2,1)和點B(-1,-2),則不等式的解集為________________.
作業三:在平面直角坐標系中,一次函數的圖象與坐標軸圍成的三角形,叫做此一次函數的坐標三角形.例如,圖中的一次函數的圖象與x、y軸分別交于點A、B,則△OAB為此函數的坐標三角形.
(1)求函數y=x+3的坐標三角形的面積;
(2)若一次函數y=kx+4(k為常數)的坐標三角形的面積
為,
求一次函數的解析式.
【課后作業參考答案】
作業一:B;
作業二:
-1作業三:(1)6,(2)
或教

教學基本信息
課題
一次函數復習(第一課時)
學科
數學
學段:
初中
年級
初二
教材
書名:
《人教版數學八年級下冊教科書》
出版社:人民教育出版社
出版日期:2019年11

教學目標及教學重點、難點
教學目標:復習函數的定義、三種表示方法、正比例函數和一次函數的關系,一次函數的相關知識,能結合圖象數形結合地理解解不等式、方程(組),體會函數是刻畫現實世界中變化規律的重要數學模型,嘗試用研究一次函數的方法探究新函數;
重點:
結合圖象數形結合地分析簡單的函數關系;
難點:
用研究一次函數的方法探究新函數。
教學過程(表格描述)
教學環節
主要教學活動
設置意圖
引入
前面幾節課上,我們從認識變量與函數開始,學習了一類最基本的函數——一次函數,本節課我們就對前面學過的知識進行一個小結。
在一個變化過程中,如果有兩個變量x與y,對于變量x的每一個確定的值,變量y都有唯一確定的值與其對應,那么就說y是x的函數,稱x為自變量。
函數的定義作為復習的起點。
例題
例1:下表記錄了一輛汽車在實驗場地上做耗油實驗的數據。在行駛的過程中,油箱中剩余油量G和行駛時間t是否具有函數關系呢?
汽車行駛時間t/小時0123…油箱中剩余油量G/升100948882…
通過觀察行駛時間,我們發現在實驗過程中每隔一個小時會進行一次監測,觀察剩余油量的變化,發現每小時都減少6升。在這個變化過程中,行駛時間和剩余油量是兩個變量。剩余油量隨著行駛時間的變化而變化,并且對于行駛時間中每一個確定的t值,剩余油量都有唯一確定的值與其對應,滿足函數的定義。因此G是t的函數,其中t為自變量,解析式為G=100-6t。函數圖象為連接點(0,100)和(,0)的一條線段。和列表法、解析式法相比,圖象法則更加直觀、形象。
在一次函數的學習中,就始終貫穿著數形結合的思想。已知一次函數的解析式,我們可以得到滿足條件的兩組x、y的對應值,以每組對應值中的x作為橫坐標,y作為縱坐標,就可以在平面直角坐標系中確定兩個點,連接兩個點的直線就是一次函數的圖象;反之(按)如果已知圖象,可以在上面任取兩個點,分別將這兩個點的橫縱坐標代入解析式中的x、y,從而得到關于k、b的一個二元一次方程組,解出k、b的值,進而得到一次函數的解析式。這種求函數解析式的方法稱為待定系數法。
例2:已知一次函數y=kx+b
(k≠0)的圖象,經過點M(1,2)和點N(3,-2),求一次函數的解析式.
將點M、N代入y=kx+b中,解得k=-2,b=4,因此解析式為y=-2x+4.
結合這個一次函數,從以下幾個方面回顧一次函數的有關知識:
1、圖象的位置:
(1)正比例函數y=kx(k≠0)可以看作是一次函數中b=0的特殊情況。正比例函數的圖象經過原點,一次函數的圖象經過(0,4),正比例函數圖象經過第二、四象限,向上平移4個單位長度后,一次函數的圖象經過第二、一、四象限;
(2)圖象與坐標軸的交點.
2、函數變化規律:
從數的角度看,
k=-2<0,因此y隨x的增大而減小,從形的角度看,直線從左到右逐漸下降;
從形的角度看,在這條直線上選取兩點(,)、(,),對比他們的橫縱坐標,可以發現,當<時,
>,這也說明了y隨x的增大而減小.
3、從函數的觀點看不等式、方程(組):
(1)一元一次不等式-2x+4≤2:將不等號左邊的-2x+4對應函數y=-2x+4,不等式-2x+4≤2就理解為求y≤2時,自變量x的取值范圍,進一步借助函數圖象找到對應的橫坐標的取值范圍為;
(2)二元一次方程2x+y=4:將方程改寫為y=-2x+4的形式,這個方程對應著一次函數y=-2x+4,同時也對應直線
y=-2x+4,這條直線上每個點的坐標都是二元一次方程的一個解,直線上的無數個點也就對應了方程的無數個解;
(3)二元一次方程組:兩個方程對應著兩個一次函數y=-2x+4和y=x-5,同時也對應著兩條直線;從數的角度看,解這樣的方程組,相當于求自變量為何值時,相應的兩個函數值相等,以及這個函數值是多少;從形的角度看,解這個方程組,相當于確定兩條相應直線y=-2x+4與
y=x-5交點的坐標.
例3:畫出函數的圖象.根據函數圖象回答下列問題:
(1)求不等式的解集;
(2)若關于x的方程有解,求b的取值范圍.
解:確定自變量x的取值范圍應為任意實數。
列表:
x…-3-2-1012345…y…432101234…
描點、連線:
(1)解這個不等式,相當于求函數的函數值大于1時,自變量的取值范圍。從圖象上看,可得x<0或x>2.
(2)將方程左右兩邊分別看作是兩個函數和,方程有解就對應著兩個函數的圖象有交點:
當b=0時,與的圖象有交點,因此對應方程有解,滿足題意;
當向上移動時,與始終有兩個交點,對應方程有解;
當向下移動時,交點從2個減少到1個,最后沒有交點;
因此經過點(1,0)的直線為臨界狀態。
將(1,0)代入中,解得此時b=.再結合剛才的分析可知,當時,方程有解。
通過一個實際問題幫助學生理解函數的概念,體會函數是刻畫現實世界中變化規律的重要數學模型,并復習函數的三種表示方法。
從函數定義過渡到一次函數的相關知識復習。
一次函數是本章的學習重點,學生已經習慣于給出一次函數,回答相應問題。但是如何全面地理解一次函數,利用所學知識,由淺入深地分析函數則是對學生能力的考察。因此本例旨在從解析式出發,幫助學生梳理所學的有關一次函數的有關性質,加強對基礎知識和基本技能的掌握,提高基本能力,達到舉一反三的效果。
通過本例,力求滲透研究函數的一般方法,經歷觀察、猜想、取點、畫圖,考察函數概念學習的全過程,最后利用數形結合的思想解決相關問題。
總結
本章的主要內容包括變量與函數的概念,函數表示法,一次函數(包括正比例函數)的解析式、圖象及性質.通過本章的學習,可以判斷具體問題中的函數關系,轉換函數的不同表示方法,利用圖象數形結合地分析簡單的函數關系.通過對初等函數“一次函數”的學習,經歷學習和探究一個具體函數的一般過程,即從定義、圖象、性質、函數與方程及不等式的關系等方面進行研究。希望通過本節的學習,學生可可以對所學知識之間的相互關系更加清晰,學會全面地分析問題、思考問題。
回顧本章所學內容,對本節課所學內容的一個小結。
作業
1.
根據下表中一次函數的自變量x與函數y的對應值,可得p的值為(

x-201y3p0
A.1
B.-1
C.3
D.-3
2.
直線經過兩點A(2,1)和點B(-1,-2),則不等式的解集為________________.
3.
在平面直角坐標系中,給出如下定義:一次函數的圖象與坐標軸圍成的三角形,我們稱之為一次函數的坐標三角形.
例如,圖中的一次函數的圖象與x、y軸分別交于點A、B,則△OAB為此函數的坐標三角形.
(1)求一次函數的坐標三角形的面積;
(2)若一次函數
(k為常數)的坐標三角形的面積為,求一次函數的解析式.
鞏固本節課所學的知識,注重數形結合、綜合所學知識分析、解決問題。《課題名稱》學習任務單
【學習目標】
會根據條件求出一次函數的解析式;
會解決與一次函數有關的面積、最值問題;
會用函數觀點看方程、不等式。
【課前預習任務】
總結用待定系數法求一次函數解析式的步驟;
總結一次函數與一元一次方程、一元一次不等式、二元一次方程組之間的關系。
【課上學習任務】
例1.直線過點,且與直線相交于點.
求直線的表達式;
若直線與軸交于點,點在軸上,且,求出點的坐標。
例2.已知直線y=2x-1.
求它關于軸對稱的直線所對應的函數表達式;
將直線y=2x-1向左平移3個單位,求平移后所得直線所對應的函數表達式;
將直線y=2x-1繞原點O順時針旋轉,求旋轉后所得直線所對應的函數表達式。
例3.已知點和點,分別求出滿足下列條件的點的坐標:
(1)在直線y=4上找一點C,使得AC+BC的值最小;
(2)在x軸上找一點D,使得的周長最小;
(3)在y軸上找一點E,使得|AE-BE|的值最大.
【課后作業】
1.若直線y=2x-4與直線y=4x+b的交點在第三象限,則b的取值范圍是
.
2.如圖,直線經過點,則關于的一元一次不等式的解集是_______.
3.直線y=x+1與x、y軸分別交于點A、B,直線y=-2x+4與x、y軸分別交于點D、C,這兩條直線交于點E.
求E點的坐標;
若P為直線CD上一點,當的面積為時,求點P的坐標.
【課后作業參考答案】
1.-42..
3.(1)點E的坐標為(1,2);
(2)點P的坐標為(-1,6)或(5,6).

展開更多......

收起↑

資源列表

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 龙泉市| 镶黄旗| 安溪县| 广安市| 阳西县| 新竹市| 天镇县| 穆棱市| 鸡东县| 乐安县| 勃利县| 阿图什市| 唐河县| 澄迈县| 肇州县| 江口县| 敖汉旗| 长葛市| 邓州市| 开江县| 马关县| 普定县| 萨嘎县| 镇远县| 邵东县| 余江县| 临汾市| 赞皇县| 年辖:市辖区| 大连市| 玉树县| 台湾省| 观塘区| 泾源县| 千阳县| 滨海县| 赣榆县| 钟山县| 龙陵县| 叙永县| 五峰|